
International Journal of Computer Trends and Technology Volume 72 Issue 12, 171-178, December 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I12P121 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

WebView Security Best Practices

Sheshananda Reddy Kandula

Adobe Inc., NJ, USA.

Corresponding Author : Sheshananda4u@gmail.com

Received: 07 November 2024 Revised: 01 December 2024 Accepted: 19 December 2024 Published: 31 December 2024

Abstract - WebViews play a great role in mobile and desktop applications by embedding web content within native

applications. Native applications, typically written in platform-specific languages and frameworks, often share a common

backend with multiple web-based clients, like Android, iOS, Windows, and macOS. To streamline development processes and

enhance cross-platform compatibility, developers leverage WebViews as a unifying component. While WebViews offer

substantial advantages in terms of development speed, flexibility, and code reuse, they inherently introduce security

vulnerabilities if not implemented securely. Significant research has been performed on vulnerabilities in WebViews in

different platforms [1], [2], [3], [4], but there is a lack of a consolidated repository of best practices for securely

implementing WebViews. This review aims to address the gap and systematically investigates prevalent WebView security

vulnerabilities, assess their potential impact on application security and user privacy, and provide best practices. By bridging

the gap in existing literature, this work provides developers with actionable guidelines to build more resilient and secure

WebViews usage in mobile and desktop environments.

Keywords - Android apps, Electron apps, iOS apps, Security, WebView.

1. Introduction
WebViews are widely utilized components in software

development that enable mobile and desktop applications to

render web content within a native environment. By

embedding a web browser directly into applications,

WebViews facilitate the seamless integration of web-based

features and dynamic content, making them indispensable in

hybrid application development. They are particularly

prevalent in mobile platforms such as Android (via

WebView) and iOS (via WKWebView), as well as desktop

frameworks like Electron and cross-platform development

solutions such as Flutter and React Native. Through these

implementations, WebViews act as a bridge between web

technologies and native platforms, enabling developers to

create interactive and feature-rich applications while

leveraging the versatility of the web.

However, alongside their many advantages, WebViews

introduce significant security challenges. By inherently

relying on web-based technologies, they inherit

vulnerabilities traditionally associated with web browsers,

such as cross-site scripting (XSS) [5], [6] remote code

execution (RCE) [7], man-in-the-middle (MITM) [8] attacks,

and data leakage. These risks are exacerbated in scenarios

where untrusted content is loaded or where WebView

configurations are mismanaged. Such vulnerabilities not only

compromise application security but can also expose

sensitive user data and other critical assets to malicious

actors. Addressing these challenges requires a

comprehensive understanding of WebView security risks and

the adoption of robust mitigation strategies. This introduction

highlights the critical need for developers to balance the

convenience of Web Views with robust security practices.

Proper configuration, secure coding principles, and

adherence to best practices are essential for mitigating risks

and safeguarding applications and users. The following

sections explore the features of Web Views, their

vulnerabilities, and the strategies that developers can employ

to enhance their security.

2. WebView Definition
Android WebView[9]: The WebView class is an

extension of Android's View class that displays web pages.

WebView will not have the features of a fully developed web

browser, such as navigation controls or an address bar. All

WebView does, by default, is show a web page. iOS

WebView[10]: A WKWebView object is a platform-native

view to incorporate web content seamlessly into the app’s

UI. A web view supports a full web-browsing experience and

presents HTML, CSS, and JavaScript content alongside the

app’s native views.

Even though there are several platform-specific

implementations and terminologies for WebViews—such as

Android WebView, iOS WKWebView, and Electron

WebView—this review adopts a unified perspective.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sheshananda Reddy Kandula / IJCTT, 72(12), 171-178, 2024

172

Going forward, “WebView” will be used as a general

term to represent any platform-specific implementation of a

web content rendering engine embedded within native

applications.

2.1. Native App with a WebView vs. Web App

Native App running on Mobile devices or Desktop use

WebView to display the web content[11]. Browsers will

have a full rendering engine to run the web content[12].

3. Features of WebViews
The following features are designed to make WebViews

versatile and powerful for integrating web technologies into

native and hybrid applications.

• Cross-Platform Content Rendering: Embeds web content

(HTML, CSS, JavaScript) in native apps for hybrid app

development.

• JavaScript Execution: Supports running JavaScript for

dynamic functionality, with options to enable/disable on

Android, iOS, and Electron.

• Bidirectional Communication: Enables interaction

between native code and web content via bridges like

addJavascriptInterface (Android),

WKScriptMessageHandler (iOS), and ipcRenderer

(Electron).

• Navigation Controls: Allows control over URL loading

and restricts content to trusted domains.

• Content Security: Implements Content Security Policies

(CSP), SSL validation, and safe browsing modes.

• File and Resource Access: Limits file system access

using platform-specific permissions and sandboxing.

• Offline Caching: Supports caching for loading web

content offline.

• Customization and Styling: Offers UI customization,

including injecting CSS/JavaScript for tailored user

experiences.

• Debugging and Performance Tools: Integrated

debugging via Chrome DevTools (Android/Electron)

and Safari Developer Tools (iOS).

• Accessibility: Inherits platform-specific accessibility

APIs for screen readers and navigation.

• Advanced Features: Platform-specific tools like

startSafeBrowsing (Android), desktop/mobile rendering

modes (iOS), and Node.js integration (Electron).

Web Content

Native App

WebView

Web Rendering Engine

 JavaScript Bridge

 Native Bridge

Web Content

Browser

Shell / UI

Web Rendering Engine

Native APIs / Platform

Native App with a WebView Web App

Native APIs / Platform

Sheshananda Reddy Kandula / IJCTT, 72(12), 171-178, 2024

173

4. How WebView Vulnerabilities occurs
WebView vulnerabilities exist primarily because of the

inherent nature of WebViews, which combine web

technologies with native application features.

This creates a complex surface where web-based

security risks (e.g., XSS, malicious code injection) interact

with the security implications of native app environments

(e.g., accessing device APIs, files, or secure data).

4.1. XSS (Cross Site Scripting)[5]

Cross Site Scripting (XSS)[13], [14] is a web security

vulnerability that allows an attacker to compromise the

interactions that users have with a vulnerable application by

executing malicious JavaScript code in the victim’s browser.

4.2. RCE (Remote Code Execution)

Remote Code Execution (RCE) is a kind of security

vulnerability that allows attackers to execute arbitrary code

in the victim's machine. It is a technique for accessing or

infiltrating the data in a target machine or system. [15], [16]

4.3. Code Injection

Code injection attack occurs when untrusted code is

injected into the application, and the application executes the

code without proper validations. [17]

The following are a few reasons why these

vulnerabilities occur:

• Trusting the user's input

• Misconfigurations

• MITM attacks

• File System Access

5. Overview of Related Work
The studies referenced below touch on various

dimensions of WebView security. However, there is a lack of

comprehensive best practices for securing WebViews in real-

world applications. Here is a summary of the contributions:

5.1. Web Access Monitoring Mechanism via Android

WebView for Threat Analysis [18]

• This paper focuses on using Android WebView to

monitor web access patterns and detect threats.

• Contribution: Offers insights into how WebView can

serve as a tool for threat analysis.

• Gap: Does not address practical, preventive measures for

securing WebView itself.

5.2. The Privacy and Security Risks of Mobile In-App

Browsers [19]

• This study highlights the privacy and security risks

posed by in-app browsers and WebViews.

• Contribution: Identifies risks such as tracking, phishing,

and lack of transparency in mobile WebViews.

• Gap: Provides limited actionable strategies for

developers to mitigate these risks.

5.3. Automatically Retrofitting Cordova Applications for

Stricter Content Security Policies [4]

• Examines how Cordova applications can implement

stricter Content Security Policies (CSPs).

• Contribution: Focuses on retrofitting legacy apps with

enhanced CSP measures.

• Gap: Discusses Cordova apps but lacks a generalized

framework for securing WebViews across platforms.

5.4. Comparative Analysis of Android and iOS from

Security Viewpoint [3]

• Compares Android and iOS platforms regarding security

features and vulnerabilities.

• Contribution: Provides a platform-level perspective on

security.

• Gap: Does not focus specifically on WebView or hybrid

app security.

5.5. Vulnerabilities in Android WebView objects: Still not

the end! [20]

5.6. Electrolint and Security of Electron Applications [21]

6. Common WebView Vulnerabilities
Below are common vulnerabilities observed so far in the

WebViews from the research. Even Android, iOS and

Electron recommend using best practices against these

vulnerabilities.

6.1. Real World Vulnerabilities

Several applications were vulnerable to WebView

implementations.

• Basecamp WebView validation [22]: It was identified

that the android com.basecamp.bc3 application contains

a Webview where the loaded URLs are not sanitised

properly. As this web view's functionality is extended

via javascript interfaces and has the javascript enabled, it

is possible to inject arbitrary javascript code, which will

be executed by the application's webview and provide

access to the java native code.

• Zomato exported activity WebView Vulnerability [23]

• TikTok One Click Account Hijacking via Unvalidated

Deeplink [24]: A WebView Hijacking vulnerability was

found on the TikTok Android application via an

unvalidated deep link on an un-sanitized parameter. This

could have resulted in account hijacking through a

JavaScript interface.

Sheshananda Reddy Kandula / IJCTT, 72(12), 171-178, 2024

174

Table 1. WebView vulnerabilities

Vulnerability Description

JavaScript Injection

Malicious JavaScript code is injected into WebView, allowing attackers to execute

arbitrary code within the application, potentially leading to data theft and

manipulation of app functionality.

File System Access

WebViews may inadvertently grant access to a device’s file system, potentially

exposing sensitive data or allowing malicious file operations like reading, writing, or

deleting files.

SSL Certificate

Validation

Inadequate SSL certificate validation can leave WebViews vulnerable to Man-in-

the-Middle (MITM) attacks, allowing attackers to intercept and manipulate

network traffic.

Cross-Site Scripting

(XSS)

WebViews are prone to XSS attacks when they render untrusted content without

proper sanitization, allowing attackers to inject malicious scripts and compromise

user data or functionality.

URL Scheme Abuse

Custom URL schemes supported by WebViews can be exploited by attackers to

trigger unintended actions within the app or access sensitive information, potentially

leading to vulnerabilities.

Insecure Bridge

Communication

The communication bridge between native code and web content can be a target for

attacks if not properly secured, enabling attackers to execute malicious code or

access sensitive native APIs.

7. Security Best Practices
These best practices provide a strong foundation for

securing WebViews in mobile and desktop applications,

enhancing overall app security and protecting user data.

7.1. Input Validation and Sanitization

Description: Ensure all user input and external data are

validated and sanitized to prevent injection attacks.

7.2. Content Security Policy (CSP)

Description: Implement a strict Content Security Policy

(CSP) to restrict the sources from which executable content

can be loaded, mitigating XSS and injection risks.

7.3. SSL Pinning

Description: Apply SSL pinning to ensure WebViews

only connect to trusted servers with valid certificates,

preventing Man-in-the-Middle (MITM) attacks.

7.4. Disable JavaScript When Unnecessary

Description: Disable JavaScript unless absolutely

required, reducing the attack surface for potential exploits.

7.5. Limit File System Access

Description: Restrict WebView's access to the device's

file system to prevent malicious file operations and

unauthorized data exposure.

7.6. Secure Bridge Communication

Description: Encrypt and authenticate data exchanged

between native code and web content, ensuring secure

communication channels.

7.7. Regular Security Audits

Description: Conduct regular security audits to identify

and address vulnerabilities and apply security patches

promptly.

Table 2. WebView Security Best Practices

Category Android[25] iOS [26] Electron

Input Validation

and Sanitization

Validate and sanitize all user inputs

and external data before rendering in

WebViews to prevent injection

attacks.

Same as Android Same as Android

Content Security

Policy (CSP)
Implement CSP in loaded web content

to restrict sources of executable scripts

and mitigate XSS.

Apply CSP in WKWebView’s

content using the HTTP header

or meta tags.

Set CSP for Electron apps

to restrict sources of

scripts and other content

(default-src 'self').

JavaScript

Management

Disable JavaScript unless necessary

using getSettings().

setJavaScriptEnabled(false).

Disable JavaScript unless

required using

configuration.preferences.

javaScriptEnabled = false.

Set javascript: false in

webPreferences unless

necessary.

Sheshananda Reddy Kandula / IJCTT, 72(12), 171-178, 2024

175

File System

Access

Restrict access to local files with file://

URLs and disable file access via

setAllowFileAccess(false).

Same as Android;

WKWebView automatically

has limited file system access.

Use sandbox: true and

limit file system access

through webPreferences.

Secure Bridge

Communication

Use addJavascriptInterface cautiously,

exposing only necessary interfaces and

securing them with access controls.

Limit message handlers in

WKWebView using

WKScriptMessageHandler to

prevent exploitation.

Secure communication

bridges and encrypt

sensitive data exchanged

between web content and

native code.

URL

Allowlisting

Implement URL filtering using

shouldOverrideUrlLoading() to allow

only trusted URLs.

Use WKNavigationDelegate to

validate and restrict

navigations to trusted domains.

Use will-navigate and

webContents listeners to

restrict WebView

navigation.

Disable

Debugging

Features

Disable debugging with

setWebContentsDebuggingEnabled

(false) for production builds.

Disable Web Inspector in

production by setting

configuration.

Preferences.isInspectable =

false.

Disable

enableRemoteModule and

developer tools in

production builds.

Prevent XSS and

Injection Attacks

Use WebViewClient with input

sanitization CSP and disable untrusted

JavaScript execution.

Same as Android Apply CSP, disable

untrusted JavaScript, and

sanitize inputs.

Clear Cache and

Cookies

Use clear cache () and CookieManager

to remove cached data and cookies

after each session.

Use

websiteDataStore.removeData

to clear sensitive data

periodically.

Clear cache and cookies

regularly in WebView to

prevent sensitive data

leakage.

Node.js and

Native Code

Access

NA NA Disable Node.js

integration with

nodeIntegration: false and

use contextIsolation: true.

8. Conclusion
 WebViews are powerful components of mobile and web

applications, but they also introduce potential security risks.

By understanding common vulnerabilities and implementing

robust security measures, developers can significantly

enhance the security of WebView implementation. Regular

security assessments, adherence to best practices, and staying

informed about emerging threats are crucial for maintaining

the integrity and security of applications utilizing

WebViews.

Funding Statement
 This research was conducted as a part of my self-

interest, and this research was self-funded.

References
[1] Zihao Jin et al., “A Security Study about Electron Applications and a Programming Methodology to Tame DOM Functionalities,”

Network and Distributed System Security Symposium, San Diego, CA, USA, pp. 1-16, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[2] Chi-Yu Li et al., “Privacy Leakage and Protection of Input Connection Interface in Android,” IEEE Transactions on Network and

Service Management, vol. 18, no. 3, pp. 3309-3323, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] Shivi Garg, and Niyati Baliyan, “Comparative Analysis of Android and iOS from Security Viewpoint,” Computer Science Review, vol.

40, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Basil Schöni, “Automatically Retrofitting Cordova Applications for Stricter Content Security Policies,” Bachelor Thesis,

 University of Bern, pp. 1-84, 2020. [Google Scholar] [Publisher Link]

[5] KirstenS, Cross Site Scripting (XSS), OWASP Foundation, 2025. [Online]. Available: https://owasp.org/www-community/attacks/xss/

[6] CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (4.16), Common Weakness

Enumeration. [Online]. Available: https://cwe.mitre.org/data/definitions/79.html

[7] CWE-749: Exposed Dangerous Method or Function (4.16), Common Weakness Enumeration. [Online]. Available:

https://cwe.mitre.org/data/definitions/749.html

[8] CWE-300: Channel Accessible by Non-Endpoint (4.16), Common Weakness Enumeration. [Online]. Available:

https://cwe.mitre.org/data/definitions/300.html

https://dx.doi.org/10.14722/ndss.2023.24305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Security+Study+about+Electron+Applications+and+a+Programming+Methodology+to+Tame+DOM+Functionalities&btnG=
https://www.ndss-symposium.org/ndss-paper/a-security-study-about-electron-applications-and-a-programming-methodology-to-tame-dom-functionalities/
https://www.ndss-symposium.org/ndss-paper/a-security-study-about-electron-applications-and-a-programming-methodology-to-tame-dom-functionalities/
https://doi.org/10.1109/TNSM.2021.3077010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Privacy+Leakage+and+Protection+of+InputConnection+Interface+in+Android&btnG=
https://ieeexplore.ieee.org/document/9420693
https://doi.org/10.1016/j.cosrev.2021.100372
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+analysis+of+Android+and+iOS+from+security+viewpoint&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000125
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatically+Retrofitting+Cordova+Applications+for+Stricter+Content+Security+Policies&btnG=
https://scg.unibe.ch/archive/projects/Scho20a.pdf
https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html

Sheshananda Reddy Kandula / IJCTT, 72(12), 171-178, 2024

176

[9] Build Web Apps in WebView, Android Developers. [Online]. Available:

https://developer.android.com/develop/ui/views/layout/webapps/webview

[10] WKWebView, Apple Developer Documentation. [Online]. Available: https://developer.apple.com/documentation/webkit/wkwebview

[11] kirupa Chinnathambi, Understanding WebViews, Kirupa, 2025. [Online]. Available: https://www.kirupa.com/apps/webview.htm

[12] Populating the Page: How Browsers Work - Web Performance, MDN Web Docs. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/Performance/How_browsers_work

[13] Andrew R. Regenscheid, and Geoff Beier, “Security Best Practices for the Electronic Transmission of Election Materials for UOCAVA

Voters,” National Institute of Standards and Technology, Internal Report, pp. 1-73, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[14] Paul A. Grassi, Michael E. Garcia, and James L. Fenton, “Draft NIST Special Publication 800-63-3 Digital Identity Guidelines,”

National Institute of Standards and Technology, pp. 1-34, 2017. [Google Scholar] [Publisher Link]

[15] Feng Xiao et al., “Understanding and Mitigating Remote Code Execution Vulnerabilities in Cross-Platform Ecosystem,” Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles CA USA, pp. 2975-2988, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[16] Mir Masood Ali et al., “Rise of Inspectron: Automated Black-box Auditing of Cross-Platform Electron Apps,” 33rd USENIX Security

Symposium (USENIX Security 24), pp. 1-18, 2024. [Google Scholar] [Publisher Link]

[17] Weilin Zhong, and Rezos, Code Injection, OWASP. [Online]. Available: https://owasp.org/www-community/attacks/Code_Injection

[18] Yuta Imamura et al., “Web Access Monitoring Mechanism via Android Web View for Threat Analysis,” International Journal of

Information Security, vol. 20, no. 6, pp. 833-847, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] Andrei-Claudiu Veres, and Andrei Dumitriu, “The Privacy and Security Risks of Mobile In-App Browsers,” SC@RUG 2023

proceedings, pp. 19-23, 2023. [Google Scholar]

[20] Mohamed A. El-Zawawy, Eleonora Losiouk, and Mauro Conti, “Vulnerabilities in Android Webview Objects: Still Not the End!”

Computers and Security, vol. 109, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Ksenia Peguero, and Xiuzhen Cheng, “Electrolint and Security of Electron Applications,” High-Confidence Computing, vol. 1, no. 2,

pp. 1-14, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Com.Basecamp.bc3 Webview Javascript Injection and JS Bridge Takeover, Hackerone, 2021. [Online]. Available:

https://hackerone.com/reports/1343300

[23] Zomato for Business Android, Vulnerability in Exported Activity WebView, Hackerone, 2019. [Online]. Available:

https://hackerone.com/reports/537670

[24] Vulnerability in TikTok Android App Could Lead to One-Click Account Hijacking, Microsoft, 2022. [Online]. Available:

https://www.microsoft.com/en-us/security/blog/2022/08/31/vulnerability-in-tiktok-android-app-could-lead-to-one-click-account-

hijacking/

[25] Security Checklist, Android Developers. [Online]. Available: https://developer.android.com/privacy-and-security/security-tips

[26] iOS Platform APIs, OWASP Mobile Application Security. [Online]. Available: https://mas.owasp.org/MASTG/0x06h-Testing-

Platform-Interaction/

Glossary:

The glossary for this article defines technical terms related to WebView security. Here are some of the important terms:

• WebView: A component used in mobile apps to display web content.

• Cross-Site Scripting (XSS): A vulnerability that allows attackers to inject malicious code into web pages.

• Remote Code Execution (RCE): A vulnerability that allows attackers to run arbitrary code on a victim's device.

• Content Security Policy (CSP): A security measure that restricts the sources from which web content can be loaded.

• Secure Sockets Layer (SSL)/Transport Layer Security (TLS): A cryptographic protocol that ensures secure

communication between a web server and a browser.

https://doi.org/10.6028/NIST.IR.7711
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+Best+Practices+for+the+Electronic+Transmission+of+Election+Materials+for+UOCAVA+Voters&btnG=
https://www.nist.gov/publications/security-best-practices-electronic-transmission-election-materials-uocava-voters
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Draft+NIST+Special+Publication+800-63-3+Digital+Identity+Guidelines&btnG=
https://csrc.nist.gov/csrc/media/publications/sp/800-63/3/draft/documents/sp800-63-3-draft-revised.pdf
https://doi.org/10.1145/3548606.3559340
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+and+Mitigating+Remote+Code+Execution+Vulnerabilities+in+Cross-platform+Ecosystem%2C&btnG=
https://dl.acm.org/doi/10.1145/3548606.3559340
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rise+of+Inspectron%3A+Automated+Black-box+Auditing+of+Cross-platform+Electron+Apps&btnG=
https://www.usenix.org/conference/usenixsecurity24/presentation/ali
https://doi.org/10.1007/s10207-020-00534-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Web+access+monitoring+mechanism+via+Android+WebView+for+threat+analysis&btnG=
https://link.springer.com/article/10.1007/s10207-020-00534-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Privacy+and+Security+Risks+of+Mobile+In-App+Browsers&btnG=
https://doi.org/10.1016/j.cose.2021.102395
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vulnerabilities+in+Android+webview+objects%3A+Still+not+the+end%21&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404821002194?via%3Dihub
https://doi.org/10.1016/j.hcc.2021.100032
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Electrolint+and+security+of+electron+applications&btnG=
https://www.sciencedirect.com/science/article/pii/S2667295221000222?via%3Dihub
https://hackerone.com/reports/1343300
https://hackerone.com/reports/537670

Sheshananda Reddy Kandula / IJCTT, 72(12), 171-178, 2024

177

Appendix 1:

Android Secure Code sample:
public class SecureWebViewActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_secure_webview);

 WebView webView = findViewById(R.id.webview);

 WebSettings webSettings = webView.getSettings();

 // Basic security settings

 webSettings.setJavaScriptEnabled(false); // Enable only if necessary
 webSettings.setAllowFileAccess(false);

 webSettings.setAllowFileAccessFromFileURLs(false);

 webSettings.setAllowUniversalAccessFromFileURLs(false);

 // Use Safe Browsing

 WebView.startSafeBrowsing(this, success -> {
 if (!success) {

 Log.e("WebView", "Safe Browsing initialization failed!");

 }
 });

 // Restrict URL loading
 webView.setWebViewClient(new WebViewClient() {

 @Override

 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 return !url.startsWith("https://trusted.com"); // Allow only trusted URLs

 }

 @Override

 public void onReceivedSslError(WebView view, SslErrorHandler handler, SslError error) {

 handler.cancel(); // Reject unsafe SSL certificates
 }

 });

 // Load a trusted URL

 webView.loadUrl("https://trusted.com");

 }
}

Appendix 2:
iOS Secure Code example:
import UIKit

import WebKit

class SecureWebViewController: UIViewController, WKNavigationDelegate, WKUIDelegate {

 var webView: WKWebView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Configure WKWebView

 let webViewConfiguration = WKWebViewConfiguration()
 webViewConfiguration.preferences.javaScriptEnabled = false // Disable JavaScript by default

 webViewConfiguration.preferences.javaScriptCanOpenWindowsAutomatically = false // Prevent pop-ups

 // Create WKWebView

 webView = WKWebView(frame: self.view.bounds, configuration: webViewConfiguration)
 webView.navigationDelegate = self

 webView.uiDelegate = self

 self.view.addSubview(webView)

Sheshananda Reddy Kandula / IJCTT, 72(12), 171-178, 2024

178

 // Load content securely

 if let url = URL(string: "https://trusted-domain.com") {

 let request = URLRequest(url: url)

 webView.load(request)
 }

 }

 // WKNavigationDelegate - Restrict navigation to trusted domains

 func webView(_ webView: WKWebView, decidePolicyFor navigationAction: WKNavigationAction, decisionHandler: @escaping

(WKNavigationActionPolicy) -> Void) {
 if let url = navigationAction.request.url {

 let trustedDomains = ["trusted-domain.com"]

 if trustedDomains.contains(url.host ?? "") {
 decisionHandler(.allow) // Allow navigation for trusted domains

 } else {

 print("Blocked navigation to: \(url)")
 decisionHandler(.cancel) // Block navigation for untrusted domains

 }

 } else {

 decisionHandler(.cancel)

 }

 }

 // WKNavigationDelegate - Handle SSL errors (additional checks beyond built-in)

 func webView(_ webView: WKWebView, didFailProvisionalNavigation navigation: WKNavigation!, withError error: Error) {
 print("Navigation failed with error: \(error.localizedDescription)")

 }

 // Clear sensitive data from cache

 override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(animated)

 webView.configuration.websiteDataStore.httpCookieStore.getAllCookies { cookies in

 cookies.forEach { cookie in
 self.webView.configuration.websiteDataStore.httpCookieStore.delete(cookie)

 }

 }
 webView.configuration.websiteDataStore.removeData(ofTypes: WKWebsiteDataStore.allWebsiteDataTypes(), modifiedSince: Date.distantPast) {}

 }

 // Example of Secure Communication (WKScriptMessageHandler)

 func setupMessageHandler() {

 webView.configuration.userContentController.add(self, name: "secureHandler")
 }

}

// Extension to handle JavaScript messages securely

extension SecureWebViewController: WKScriptMessageHandler {

 func userContentController(_ userContentController: WKUserContentController, didReceive message: WKScriptMessage) {
 guard message.name == "secureHandler" else { return }

 print("Received message from web content: \(message.body)")

 }
}

